SYNTHESIS AND PROPERTIES OF AZOLES AND THEIR DERIVATIVES XVIII.* PREPARATION OF 1-SUBSTITUTED 2-(BENZIMIDAZOL-2-YL)IMIDAZOLINES

G. A. Shvekhgeimer and V. I. Kelarev

UDC 547.785.5'781.3

The condensation of 2-trichloromethylbenzimidazole with various N-monosubstituted ethylenediamines has given 1-substitued 2-(benzimidazol-2-yl)imidazolines.

Substituted 2-imidazolines find wide use as biologically active compounds [2, 3]. The present work was devoted to the preparation of N-substituted imidazolines containing a benzimidazole residue in position 2. This type of compound cannot be obtained by the usual methods for the synthesis of 2-imidazolines [4], since the initial benzimidazole-2-carboxylic acid and its derivatives are difficultly accessible compounds or are unreactive (for example, the nitrile). Consequently, for the synthesis of 1-substituted 2-(benzimidazol-2-yl)imidazolines we made use of the capacity of 2-trichloromethylbenzimidazole (I) for taking part in nucleophilic exchange reactions under the influence of amines without undergoing the haloform decomposition [5]. The use in this reaction of N-monosubstituted ethylenediamines (II-VII) enabled the 2-(benzimidazol-2-yl)imidazolines (VIII-XIII) to be obtained.

II, VIII $R=C_6H_5CH_2$; III, 1X $R=HOCH_2CH_2$; IV, X $R=NCCH_2CH_2$; V, XI R= furfuryl VI, XII R=1-benzotriazolylmethyl VII, XIII R=1 α -thienylmethyl

In the IR spectra of compounds (VIII-XIII) there are intense absorption bands in the 1610-1595 cm⁻¹ region relating to the vibrations of the C = N bond [6], and there are also bands in the 1430-1420 cm⁻¹ region which relate to the deformation vibrations of a C-H bond or to the "scissors" vibrations of the CH_2 groups in an imidazoline ring [7]. In addition, there are absorption bands characteristic for benzimidazoles and for the groupings present in position 1 of the imidazoline ring.

EXPERIMENTAL

Thin-layer chromatography was carried out on Al_2O_3 of activity grade II in the heptane-isopropanol (5:1) system.

Compounds (I) [5], (II) [8], (III) [9], (IV) [10], and (V) [11] were prepared by known methods.

N-(α -Thienylmethyl)ethylenediamine (VI). At 15-20°C with stirring, 11.7 g (0.088 mole) of α -chloromethylthiophene was added to 26.5 g (0.44 mole) of 100% ethylenediamine in 30 ml of absolute methanol, the mixture was stirred at 40°C for 4 h and at 60°C for 30 min and was then cooled to 0°C, and a solution of 2.02 g (0.088 mole) of sodium in 15 ml of absolute methanol was added and the resulting mixture was stirred at 0°C for 1 h. The precipitate that deposited was filtered off, the filtrate was evaporated under reduced

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

^{*}For Communication XVII, see [1].

I. M Gubkin Moscow Institute of the Petrochemical and Gas Industry. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 122-123, January, 1974. Original article submitted January 15, 1973.

TABLE 1. 1-Substituted 2-(Benzimidazol-2-yl)imidazolines

Com- pound	M p, °C *	R_f	Empirical formula	Found, %			Calculated, %			1, %
				С	н	N	С	н	N	Yield,
VIII IX X XI XII XIII	193—194 183—184 † 170 209—210 188—188,5 205—206	0,79 0,62 0,54 0,72 0,84 0,75	C ₁₇ H ₁₆ N ₄ — C ₁₃ H ₁₃ N ₅ C ₁₅ H ₁₄ N ₄ O C ₁₅ H ₁₄ N ₄ S C ₁₇ H ₁₅ N ₇	75,1 65,0 67,5 63,6 63,9	5,8 5,5 5,7 5,1 4,6	20,5 29,7 21,1 20,1 30,6	75,0 65,2 67,3 63,8 64,3	5,8 5,4 5,6 4,9 4,7	20,3 29,3 20,9 19,8 31,0	90 74 93 90 88 75

^{*}Compounds (VIII, X, and XII) were crystallized from acetonitrile, (IX) and (XI) from ethyl acetate, and (XIII) from nitromethane.

† According to the literature [5], mp 180°C.

pressure, and the residual oil was distilled in vacuum giving 10.3 g (75%) of (VI) with bp 115-116°C (7 mm), $^{20}_{D}$ 1.5512; $^{20}_{d_4}$ 1.1024. Found: C 53.8; H 7.7; N 18.1%. $^{20}_{T_{12}N_2}$. Calculated: C 53.7; H 7.6; N 17.9%. Dipicrate of (VI). Mp, 113-114°C (50% acetone).

N-(Benzotriazol-1-ylmethyl)ethylenediamine (VII). This was obtained in a similar manner to (VI) from 15.0 g (0.25 mole) of 100% ethylenediamine and 8.4 g (0.05 mole) of 1-chloromethylbenzotriazole [12]. Yield of (VII) 7.7 g (81%); viscous undistillable oil. Dipicrate of (VII). Mp,219-220°C (50% ethanol). Found: C 38.7; H 2.9; N 24.2%. $C_9H_{13}N_5 \cdot 2C_6H_3N_3O_7$. Calculated: C 38.8; H 2.9; N 23.7%.

2-(Benzimidazol-2-yl)-1-benzylimidazoline (VIII). In portions, 1.0 g (0.0042 mole) of (I) was added with stirring at 10°C to 2.5 g (0.017 mole) of (II) in 15 ml of water. The reaction mixture was stirred at 20°C for 1 h and was poured into 30 ml of cold water, and the precipitate was collected, washed with 10% KOH, and dried.

The other 1-substituted 2-(benzimidazol-2-yl)imidazolines (IX-XIII) were obtained similarly (Table 1).

LITERATURE CITED

- 1. G. A. Shvekhgeimer and V. I. Kelarev, Khim. Geterotsikl. Soedin., 1674 (1973).
- 2. G. Holan, U.S. Patent No. 3,377,239 (1966); Chem. Abstr., 69, 59,237k (1968).
- 3. M. Mousseron, J. Kamenka, and A. Stenger, J. Med. Chem., 11, 889 (1968).
- 4. R. J. Ferm and J. L. Riebsomer, Chem. Rev., 54, 593 (1954).
- 5. B. C. Ennis, G. Holan, and E. Samuel, J. Chem. Soc., C, 33 (1967).
- 6. L. Bellamy, Infrared Spectra of Complex Molecules, 2nd ed., Methuen, London (1958).
- 7. A. R. Katritzky, Physical Methods in the Chemistry of Heterocyclic Compounds, Academic Press (1963).
- 8. R. P. Lastovskii and N. D. Kolpakova, Methods of Obtaining Chemical Reagents and Preparations [in Russian], Vol. 12 (1965), p. 31.
- 9. F. Bailes and C. Paquot, Oléagineux, 21, No. 7, 449 (1966).
- 10. A. P. Terent'ev and A. N. Kost, Zh. Obshch. Khim., 20, 2069 (1950).
- 11. A. A. Ponomarev and I. M. Skvortsov, Zh. Obshch. Khim., 32, 97 (1962).
- 12. T. Burkhalter, V. Stephens, and L. Hall, J. Amer. Chem. Soc., 74, 3868 (1952).